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Abstract 

The modulated structure of SC(NH2)2 has been 
determined using the superspace-group formalism, in 
the superspace group P(Pnma):(sll). Data include 
main reflections and up to third-order satellite 
reflections. Three harmonics have been included in 
the modulation. The superspace description of the 
modulation is discussed in detail and compared with 
that using symmetry modes. The final agreement 
factors are R = 0.046, R0 = 0.038, RI = 0.046, Rz = 
0.089 and R3 = 0.115, for all reflections, main reflec- 
tions, and first-, second- and third-order satellites, 
respectively. The structure was investigated in the 
commensurate phase with modulation wavevector q 
= lb*, but the analysis was performed considering 
the modulation as incommensurate. The results 
essentially agree with those recently obtained by 
Tanisaki & Mashiyama [Acta Cryst. (1988), B44, 
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441-445] using a standard commensurate approach 
for a ninefold structure. Other structural models 
proposed recently were checked with negative results. 
The atomic modulations could be interpreted in 
terms of rigid-body modulated motions. The 
anharmonicity of the modulation functions is con- 
siderable, with non-negligible contributions of 
second and third harmonics. The form of the rigid- 
body modulation functions indicates an incipient 
soliton regime. Crystal data of the average structure: 
Mr = 76.07, orthorhombic, Pnma, a = 7-5429 (8), b 
= 8.5422 (7), c = 5.4647 (4) A, V=  352-10 (5) A 3, Z 
= 4, Dx = 1.44 g cm -3, A(Cu Ka) = 1"5418 A, /.t = 
59.1 cm-1, F(000) = 160, T--  168 K, wavevector q = 
0.111b*. 

1. Introduction 

Thiourea ,  SC(NH2)2, and its deuterated form exhibit 
rich phase diagrams under external variables such as 
temperature, pressure and electric field. At atmos- 
pheric pressure and zero electric field, thiourea 
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undergoes a phase transition at 200 K from the 
room-temperature phase with space group Pnma to 
an incommensurate modulated phase along the b 
axis. In the interval 171-169 K the modulation locks 
into a commensurate form corresponding to a wave- 
vector q = ~b*. Below 169 K, the crystal transforms 
into a nonmodulated ferroelectric phase (q = 0) with 
space group P2~ma (Denoyer & Currat, 1986). The 
transition temperatures are approximate and are 
taken from Westrum & McCullough (1963). The 
corresponding temperatures for the deuterated com- 
pound are 218, 193 and 191 K (Denoyer, Mouden, 
Currat, Vettier, Bellamy & Lambert, 1982). 

The symmetry and structure of the modulated 
phase of thiourea are still under discussion. Earlier 
structure analyses of the incommensurate phase have 
been reported by Futama (1970), Tanisaki & 
Nakamura (1970), Shiozaki (1971) and McKenzie 
(1975). In Shiozaki (1971), X-ray diffraction data 
from a monocrystal at 187 K were interpreted in 
terms of a transverse sinusoidal modulation. No 
assumption was made about the symmetry of the 
distorting mode, which was only constrained by 
means of qualitative and practical arguments. 
McKenzie (1975) reanalyzed the data of Shiozaki 
(1971) and also considered new neutron diffraction 
data for the deuterated compound. The modulation 
was also taken to be sinusoidal and transverse but 
the molecules were considered rigid units. The distor- 
tion was further restricted by symmetry arguments. 
The rotations and displacements of the molecules 
with respect to the high-temperature structure, of 
space group Pnma, were taken to transform accord- 
ing to the irreducible representation 7"4 with wave- 
vector q = ~ *  (antisymmetric for the mirror plane 
trx and the binary rotation C2y). 

Based on the data of Shiozaki (1971), Yamamoto 
(1980) attempted a new structure determination 
using superspace formalism (de Wolff, 1977; Janner 
& Janssen, 1980; Yamamoto, 1982). Two harmonics 
were included in the modulation. He assumed that 7"4 
was not only the symmetry of the first harmonic but 
also of the second one and this was determinant for 
the choice of the superspace group. It was argued 
that the presence of a second harmonic reduced the 
symmetry to the superspace group P(P21/a):(ll) 
from the more symmetric P(Pnma):(sT1), which 
would correspond if only the first harmonic of sym- 
metry 7"4 was present. 

The relation between superspace symmetry and the 
symmetry restrictions of Landau theory for the 
primary and secondary distortions in a modulated 
phase was analyzed in a general context in P6rez- 
Mato, Madariaga & Tello (1984a,b). It was shown 
how the superspace group could be directly 
determined from a knowledge of the symmetry (and 
eventually the direction in multidimensional 

representation space) of the order parameter or 
primary distorting mode. If a continuous or quasi- 
continuous character is assumed for the phase transi- 
tion to the incommensurate modulated state, the 
presence of secondary modes (higher harmonics) was 
demonstrated to be irrelevant for the superspace 
symmetry of the modulated phase. The secondary 
modes were shown to be compatible with the super- 
space group determined by the primary mode. Also 
the later work of Heine & Simmons (1987), which for 
simple cases reconsidered superspace symmetry in 
the frame of Landau theory, used this property of 
secondary modes as an implicit assumption. 

According to these general properties, the super- 
space group P(Pnma):(sll) was proposed for the 
incommensurate modulated phase of thiourea 
(Prrez-Mato, Madariaga & Tello, 1984c). This pro- 
posal was at variance with the structure model of 
Yamamoto (1980). The constraints resulting from 
the proposed superspace group are equivalent to the 
assumption that the modulation is formed by the 
superposition of symmetry modes of wavevectors nq 
= nfb* with symmetries 7"4 and 7"1 for n odd and even 
respectively, provided that their relative global 
phases satisfy (9) (see §3). 

Takahashi, Onodera & Shiozaki (1987, 1988) per- 
formed a new structural analysis at 175 K using a 
rigid-molecule model with a single harmonic. Besides 
the predominant transverse component, a longi- 
tudinal translational component was also included in 
the modulation. Symmetry-mode restrictions were 
used only partially. Some of the constraints resulting 
from the 7"4 symmetry of the first harmonic were 
confirmed by the results of the refinement. 

The symmetry restrictions on the modulated struc- 
ture of thiourea have been also discussed in terms of 
symmetry modes and Landau theory in Simonson, 
Denoyer & Currat (1985). The symmetry constraints 
on the symmetry modes contributing to the modula- 
tion were fully determined. The three first harmonics 
of the modulation were taken into account. It was 
argued that the superspace group of the incommen- 
surate phase was not uniquely determined by the 
primary mode since the introduction of secondary 
modes in the Landau minimization procedure can 
lead to quite arbitrary relative shifts of the global 
phases of the different harmonics, so that the super- 
space group of the structure may be P(Pn21a):(sll) 
instead of P(Pnma):(sTl). In the following, we will 
denote this particular noncentrosymmetric structural 
model as the 'free-harmonics' model. It was also 
claimed that the symmetry-mode description or 
'Landau approach' leads to additional restrictions on 
the modulation, compared with the use of the super- 
space group. This work raised doubts about the 
comprehensiveness and limits of the superspace- 
symmetry description of modulated phases. The 
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weight of secondary modes in the global distortion of 
a modulated phase increases in a continuous manner 
as temperature is lowered. Thus, if the superspace 
symmetry of a modulated phase depends on the 
degree of relevance of secondary modes, the symme- 
try would not be unique for the whole range of the 
incommensurate phase, and the concept of super- 
space symmetry would be ill-defined. 

The results of Simonson et al. (1985) were revised 
by P6rez-Mato & Madariaga (1987). It was shown 
that a correct minimization of the Landau potential, 
including the second and third harmonics, results in 
simple relations between the relative phases of the 
harmonics, maintaining P(Pnma):(sT1) as the super- 
space group of the structure. A breaking of this 
superspace symmetry leading to the 'free-harmonics' 
model could only happen through an additional 
first-order phase transition to a new incommensurate 
phase, if higher-order terms in the Landau expansion 
eventually become relevant. But the observation of 
such an additional phase transition inside the range 
of the incommensurate phase has not been reported. 

Simonson, Denoyer & Currat (1987) consider, 
however, that the minimum of the Landau free 
energy associated with the superspace group 
P(Pnma):(sl 1) represents only a 'good first approxi- 
mation' (for small values of the order parameter) of 
the stable solution which should correspond to the 
'free-harmonics' model. At the same time, in a 
parallel argument, they insist on the possibility of a 
phase transition between the two structural models 
corresponding to the two superspace groups dis- 
cussed. The mechanism of such a transition is sup- 
posed to be present already in the Landau expansion 
up to sixth order in order parameter. 

Recently, a refinement of the modulated structure 
of the deuterated compound in the 8 =-~ phase has 
been reported (Simonson, Denoyer, Currat & 
Vettier, 1988) using neutron diffraction. First and 
third harmonics of symmetry ~'4 were included in the 
modulation. About 300 independent reflections were 
used in the refinement. The refined structure differs 
considerably from those reported previously but the 
agreement factor attained is only 0.28. Although this 
work was presented in support of the 'free- 
harmonics' model with P(Pn2,a):(sll) as the most 
probable symmetry for the structure, the structure 
refinement was performed setting to zero the phases 
of both harmonics, so that in fact they were chosen 
to satisfy automatically the relation required for the 
structure to have the superspace symmetry 
P(Pnma):(sll). In any case, the accuracy of the 
refinement seems to be too low to distinguish the 
expected subtle differences on the diffraction dia- 
gram resulting from the different models. 

Another recent analysis of the modulated structure 
of thiourea in the incommensurate phase has been 

Table 1. Characteristic parameters of structure 
analyses of the modulated phase of thiourea 

T is the temperature and No, N,, N2, N3 represent the number of indepen- 
dent observed reflections (main, first-, second- and third-order, respectively) 
included in the analysis. The global agreement factor R and the partial ones, 
R,, corresponding to the different sets of reflections, are also listed. 

T No N, 
173 - -  - -  
187 92 92 
187 92 92 
205 37 72 
187 92 92 
175 - -  78 
175 104 78 
191 90 80 
184 315 489 
173 322 514 
170 314 546 
168 344 568 

N2 N3 R Ro Rj R2 R3 Ref. 
- -  - -  0.19 . . . .  a 
37 - -  0.16 . . . .  b 
37 - -  0-19 . . . .  c 
72 72 0.40 . . . .  d 
37 - -  0.09 0-084 0.109 0.197 - -  e 
. . . .  0-127 - -  - -  f 
- -  - -  0-054 0.038 0-118 - -  - -  g 
- -  99 - -  - -  0-28 - -  ? h 

415 - -  0"106 0"063 0'148 0"355 - -  i 
290 0"076 0.048 0'106 0"202 - -  i 
358 219 0"048 0"037 0-042 0-106 0-161 j 
327 180 0"046 0"038 0"046 0"089 0'115 k 

References: (a) Futama (1970); (b) Shiozaki (1971); (c) McKenzie (1975), 
data of Shiozaki (1971); (d) McKenzie (1975), deuterated compound; (e) 
Yamamoto (1980), data of Shiozaki (1971); (,f) Takahashi et  al. (1987); (g) 
Takahashi et  al. (1988); (h) Simonson et  al. (1988), deuterated compound; 
(t) Gao et  al. (1988); (/) Tanisaki & Mashiyama (1988); (k) present results. 

reported by Gao, Gajhede, Mallinson, Petricek & 
Coppens (1988). In this work, a fourth superspace 
group, P(P2~ma):(1T1), was considered to describe 
the symmetry properties of the structure and the 
properties of its diffraction diagram. First and 
second harmonics were included in the modulation. 
The reported agreement factors, however, compare 
unfavorably with those attained with other models, 
like for instance that of Takahashi et al. (1988). In 
Table 1, a brief summary is given of the main 
characteristics of all these previous diffraction 
analyses of the modulated structure of thiourea. 

It is clear from'the discussion above that some 
important questions remain to be clarified concern- 
ing the structure of the modulation in thiourea. Even 
its superspace symmetry is unclear, since up to now 
four different superspace groups have been pro- 
posed. The question of the comprehensiveness and 
coherency of the superspace description has also 
been raised. If different structure analyses are com- 
pared, the role played by second and third harmonics 
in the modulation is unclear. The existence of a 
longitudinal component and its importance com- 
pared with the transverse modulation requires 
further clarification. All these questions can be eluci- 
dated by means of an accurate structure diffraction 
analysis, which may allow discrimination between 
the different models. The hypothetical existence of 
an incommensurate-incommensurate phase transi- 
tion can also be checked by this type of study. In the 
present paper, a new structure determination by 
X-ray diffraction of the modulated structure of 
thiourea is reported. 

It has been argued (Simonson et al., 1988) that 
X-ray diffraction may not be suitable for structural 
analysis in compounds like thiourea because of the 
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effects of radiation damage. However, these effects 
seem to be limited to an anomalous temperature 
variation of the modulation wavevector and even- 
tually a decrease of long-range order in the modula- 
tion (Andrr, Durand, Denoyer, Currat & Moussa, 
1987; Durand & Denoyer, 1988). On the other hand, 
it is known that the atomic modulation in modulated 
structures is usually rather independent of the par- 
ticular value of the modulation wavevector, being 
essentially the same even at successive commensurate 
lock-in values of the modulation wavevector. There- 
fore, it is expected that radiation damage effects have 
not essentially distorted the results of the present 
structural analysis. The high quality of the 
refinement results supports this assumption. 

We were especially interested to observe any 
deviation from the expected centrosymmetric super- 
space symmetry, P(Pnma):(sll). As these deviations, 
if they exist, are expected to increase with the modu- 
lation amplitude, the diffraction analysis was per- 
formed as close as possible to the ferroelectric (8 = 0) 
phase, inside the range where the modulation is 
locked into the value 8 = ~. As only a few harmonics 
(compared with the high order of the commensurate 
cell) are present in the modulation, this commen- 
surate modulated structure and its symmetry can be 
described in the superspace formalism. 

The present structural analysis indicates that the 
centrosymmetric superspace group P(Pnma):(sll) 
properly describes the symmetry properties of the 
modulated structure up to its low-temperature limit. 
Nevertheless, a refinement using the 'free-harmonics' 
model with superspace group P(Pn21a):(sl 1) was also 
attempted without success. 

In the following section the experimental details of 
the X-ray measurements are described. Section 3 is 
dedicated to a description of the superspace sym- 
metry and its consequences on the structural modu- 
lation and the diffraction diagram. The refinement 
procedure is then summarized (§4). Finally, the struc- 
ture is described and compared with the results of 
previous studies (§5). 

2. Experimental 

High-purity thiourea, SC(NH2)2 ,  was  obtained after 
several recrystallizations of the commercial product 
in aqueous solution. Crystals suitable for X-ray dif- 
fraction were grown by slow evaporation at room 
temperature of an aqueous solution of the purified 
compound. 

The X-ray measurements were performed with a 
CAD-4 diffractometer equipped with. an open gas- 
flow cryostat (Cosier & Glazer, 1986). The tempera- 
ture stability was within ___ 0.1 K during short per- 
iods and +_0.2K during the collection of the 
intensities. 

Preliminary studies of the stability range of the 
modulated structure and the characteristics of its 
diffraction diagram were first performed. In the 
present work, the crystallographic axes are referred 
to the setting in which the room-temperature space 
group is Pnma. Lattice constants at 293 K are a = 
7.6633 (4), b = 8.5598 (4) and c = 5.4909 (3) A. The 
temperature dependence of the intensity and position 
of some satellite reflections were determined. Accur- 
ate values of the wavevector were obtained from the 
profile of scanned satellite reflections, along the b* 
direction. At each temperature and before scanning 
the reflections, the orientation matrix of the crystal 
was refined from the angles of ten high-angle (20 = 
140 ° ) well-centered main reflections. The scans were 
performed with step-by-step (0.002) stationary 
measurements of the diffracted intensity along the k 
index. Once the wavevector was determined, the 
intensity of the satellite reflection was obtained from 
an to scan. While first-order satellites were clearly 
detected at 200 K, satellites of second and third 
order could be clearly observed below 197 K. Fig. 1 
shows the temperature dependence of the intensity of 
satellite (1, 2 + 3& 1) [(1, 2, 1, 3) in the four index 
notation]. This figure shows that the phase transition 
to the ferroelectric (8 = 0) phase takes place at 
approximately 166 K. Above this value a narrow 
'plateau' can be observed, which corresponds to the 
modulated commensurate phase with q = 9!b *. 

In order to analyze the modulated structure very 
near to the final lock-in transition, the collection of 
intensities was performed about 2 K above the 
observed transition. Accordingly, the temperature of 
the controller was fixed at 168 K. At this tempera- 
ture, the modulation wavevector has the value q = 
0.111b*--lb*, as determined from the profiles of 
reflections (4, 0, 0, 3) and (3, 1, 2, 3) (Fig. 2). Similar 
good-quality profiles could be observed for other 
high-order satellite reflections. 

The temperature measured for the ferroelectric 
lock-in phase transition differs by about 3 K from 
the values reported previously (see §1). The reason 
for such a difference is unclear. All our temperatures 

i ~ | i i ] [ l i  | I [  (1 ,2 ,1 ,3 )  

ii 

• , o e o o  

1 " ' " ' " ' " ' " 60 170 180 190 200 210 

T ( K )  

Fig. 1. Temperature dependence of the intensity of the satellite 
reflection (1, 2 + 38, 1). 
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refer to the values given by the controller and were 
measured a few millimeters away from the crystal in 
the nozzle of the cryostat. Although a small tempera- 
ture gradient is expected with respect to the sample, 
previous calibrations of the cryostat indicate 
deviations smaller than 1 K. 

The crystal data and the data-collection param- 
eters are summarized in Table 2. The intensities were 
measured in the following sequence: first, satellite 
reflections with m > 0; next, the same sequence for m 
< 0; and finally, the main reflections. Only main 
reflections were used as check reflections. The reduc- 
tion of the intensities to moduli of structure factors 
was performed by means of a local version of the 
program system XRA Y72 (Stewart, Kruger, 
Ammon, Dickinson & Hall, 1972), modified for one- 
dimensionally modulated structures. Intensities were 
corrected for absorption, intensity decay and 
Lorentz-polarization factors. 

3. Symmetry of the modulated structure 

Even if the modulated structure was measured at the 
8 = ~ commensurate phase, the refinement was per- 
formed considering the structure as incommensurate. 

t ½ 

! i 
! 

I !  I l l  i l  i l i  • 

0 . . , . . , . . , . . , . . 

0.30 0 . 3 2  0 . 3 4  0.36 0.38 

k 

(a) 

f l  

] i 

Z 

Z Z  Z Z s i 

v . . , . . , . . , . . , . . 

0.30 0 , 3 2  0 . 3 4  0.36 

k 

(b) 
Fig. 2. Intensity profiles o f  the satellite reflections (a) (3, 1 + 38, 2) 

and (b) (4, 0 + 38, 0) at 168 K in the modula ted  phase. The  
modula t ion  vectors calculated for  bo th  reflections are q = 
0.334b* and 0.332b*, respectively. 

,e 

Table 2. Summary of experimental data 
Crystal form Prismatic 
Crystal size (cm) 0.015 x 0.0218 x 0.0243 
Reflections for lattice constants 19 (i 6 < O < 70 °) 
(sin O/,~)m~ (A- ')  0.61 
Check reflections 3 main reflections 
hkl0 range 0/9 - 10/10 - 6/6 0/0 
hklm range 0/8 0/9 0/6 - 3/3 
Scan width (°) 0.6 + 0-15tan0 
Scan speed (° min- ') 0-3 to 4.16 
Number of reflections 

Total 4167 
Main 1434 
Satellite 2733 

Independent reflections 
Main (observed I > 30-) 359 (344) 
First-order satellite 639 (568) 
Second-order satellite 629 (327) 
Third-order satellite 629 (180) 

Rint without absorption 0.0297 
R,,t with absorption 0.0193 
Transmission (max./min.) 0.0173/0.0105 
Weights 1/o 2 
Max. (shift/e.s.d.) 0.06 

The differences between a commensurate and an 
incommensurate description of the observed diffrac- 
tion can be considered negligible in the present case. 
These possible differences would result from the 
coherent superposition of high-order satellites with 
the lower-order ones. In our case, for instance, satel- 
lites of ninth order will superpose with main reflec- 
tions, satellites of eighth order with first-order 
satellites, seventh-order satellites with second-order 
ones, sixth-order satellites with third-order ones, and 
so on. Using an incommensurate model for the 
structure is equivalent to neglecting these super- 
position effects. As satellites beyond the third order 
are undetected in both the investigated commen- 
surate phase and the contiguous incommensurate 
phase, it is reasonable to expect that these super- 
position effects are negligible. 

If r4 (with q = ~*)  is taken as the irreducible 
representation corresponding to the order parameter 
of the modulated structure in thiourea, the super- 
space symmetry of this structure is expected to be 
described by the superspace group P(Pnma):(sll) 
(see §1). Therefore, this was our first choice for the 
structure refinement. The elements of this group 
(obviating the superlattice translations) are given in 
Table 3. The operations are indicated in the form 
{R It, r}, where R is the rotational operation, t 
indicates the fractional translation in the real space 
and r is the shift along the internal space 
(Yamamoto, 1982, P6rez-Mato, Madariaga, Zufiiga 
& Garcia-Arribas, 1987). As can be seen in the table, 
the internal translation z depends in general on the 
value of the modulation wavevector and on the 
arbitrary choice of origin along the internal space. 
The origin along the internal space is fixed by the 
value given to the phase ~0 in Table 3. 

The extinction rules resulting from a given 
superspace-symmetry operation {R It, r} can be 
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Table 3. Representative elements o f  the superspace 
group P(Pnma):(sl 1) with q = ~b* 

The first four elements (with the same superlattice) generate the 
subgroup P(Pn2ta):(sl 1). 

{El0,0,0,0}, 
I I 1 {~rxl~,~,~,- 8/2 + ½} 

{c~10,½,0,- ~/2 + ~} 
I I {~r~l~,0,~,0} 

{~0,0,0,~/Tr} 
I 1 /  {Cz~l~,~,~,- a/2 + ½ + ~,/~-} 

{~10,~,0,-  8/2 + ~ + ~/~} 
{C~l' ~,0,~,,#rr} 

Generators of the superlattice 

{Eli,0,0,0}, {El0,1,0,-8}, {El0,0,1,0}, {El0,0,0,1} 

easily deduced from the corresponding symmetry 
relation for the structure factor (Janner & Janssen, 
1980, Prrez-Mato, Madariaga et al., 1987): 

F ( ~ I )  = F(H)exp[ - i2"rr(H.t + mr)], ( 1 ) 

where H = ha* + kb* + le* + mq is any diffraction 
vector. For RH = H, the extinction is then obliged if 

exp[ - i2 r r (H. t  + mr)] # 1. (2) 

Accordingly, for the chosen superspace group, the 
following reflections are extinct: 

(Oklm) k + l + m = odd 

(hkOm) h = odd. (3) 

These two extinction rules are caused by the sym- 
metry operation (7) ({crxl½,~,½,-~/2+ ~}) and (g) 
({O'zl½,0,r,0}) respectively, and include as subcases 
those resulting from the other operations. The same 
rules are also valid for the less-symmetric superspace 
group P(Pn2~a):(sl 1) since it also includes these two 
operations (see Table 2). 

The reflections collected generally satisfy extinc- 
tion conditions (3). Only a few forbidden reflections 
were detected as observed. Among them, the most 
remarkable cases were some main reflections. In Gao 
et al. (1988) a similar observation led the authors to 
discard the two mentioned superspace groups and to 
choose the superspace group P(P21ma):(ll l) .  In the 
present case, however, we investigated the particular 
characteristics of these reflections, and in general the 
extinction violation could be traced back to spurious 
intensity of neighboring strong main reflections. We 
therefore considered that the symmetry properties 
of the diffraction diagram are well described by 
either the superspace group P(Pnma):(sl l)  or 
P(Pn2~a):(sll). The choice, between these two 
groups, of the centrosymmetric one was then made 
taking into account the prediction of Landau theory 
(Prrez-Mato et al., 1984a,c). The present symmetry 
choice was confirmed by the refinement results. 

In a modulated phase of wavevector q, the atomic 
position, r(l,/z), of  a t o m / z  in cell ! can be described 
in the form: 

I r(l,/x) = 1 + r~ + ~ ~ u~exp[i27rnq.(l + r~)]. (4) 
n 

The vector r~ represents the average atomic position 
and u~ = u ~ _ n*. 

If two a toms, /z  and v, are related in the average 
structure by the symmetry operation {R It} ({R It,T} 
being an operation of the structure superspace 
group), the complex Fourier vectorial amplitudes, u~ 
and u,~, describing their modulations according to (4), 
satisfy the following relation (Prrez-Mato, 
Madariaga & Tello, 1986; Prrez-Mato, Madariaga et 
al., 1987): 

aT, = Ruurm)nexp(- i27rnro), (5) 

where F(R) is + 1 ( -  1) if Rq = + q ( -  q) and ~'o = ~" 
+ q.t. If atom/1, is in a special position so that /z  = p, 
(5) becomes a symmetry restriction for the corre- 
sponding Fourier amplitudes: 

u~ = Ru~r(R)nexp( -- i2rm~-o). (6) 

In the case of superspace group P(Pnma):(sl l) ,  a 
symmetry restriction of this type results from the 
superspace-group operation {~ryl0~,0,- 8/2 + ~ + ¢/rr} 
for atoms or rigid bodies lying on the plane m in the 
average structure. If we define a new phase 6, so that 
~p = r r /2 -  ~k, the value of ro for the mentioned opera- 
tion reduces to -~b/rr (rood Z). The corresponding 
condition (6) reduces to Un.x,z = u-n .... exp(i2n~) and 
Un,y = u_n,yexp(i2n$ + iTr). Considering the complex 
conjugation relation between un and u-n, the modu- 
lation in (4) for these atoms can then be put in the 
simple form: 

An,xCOS[2rrnq.(! + r~) + n~] 
n > 0  

A,,eCOS[2~'nq.(! + rg) + n~b + 7r/2] 
n > 0  

An.zCOS[27rnq.(I + rg) + n~b], (7) 
n > 0  

where the amplitudes An. i (i  = X, y ,  2) are real quan- 
tities. 

Obviously, a symmetry relation analogous to (5) 
exists for small rotational degrees of freedom, if rigid 
bodies centered on the plane m are considered. Con- 
sequently, a symmetry restriction of the Fourier 
amplitudes, R~, describing the rotational modulation 
and similar to (6), must also be introduced, taking 
into account that the three rotational components 
transform as a pseudovector. This means that 
inversely to the translational modulation, the 
rotational modulation can be described by: 

Rn.xCOS[2rrnq.(! + r~) + m p  + 77"/2] 
n > 0  

Rn.yCOS[27rnq.(! + rg) + n~] 
n > 0  

R,,.zcos[27rnq.(! + r~) + nff + I7"/2]. (8) 
n > 0  

The restrictions on the harmonics of the structural 
modulation, given by (5), (7) and (8) are equivalent 
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to those obtained by the symmetry-mode approach 
of Simonson et al. (1985). It can be easily checked 
that relation (5), together with the restrictions (7) 
and (8), is enough for atoms or rigid bodies lying on 
the plane m to ensure that the odd and even harmon- 
ics of the modulation have T 4 and r~ symmetry, 
respectively, as required in the Landau model. Equa- 
tions (7) and (8) also introduce a fixed relation 
between the global phases ~, of the different har- 
monics: 

4,, = n~b(modrr). (9) 

Thus, the mode approach is fully equivalent to the 
superspace description in the superspace group 
P(Pnma):(sll) ,  if the global phases of the different 
harmonics are assumed to satisfy (9). From a simple 
Landau model, relation (9) can be expected to be 
satisfied in the modulated phase of thiourea, so that 
the superspace group P(Pnma):(sl l)  also describes 
the symmetry of the structure if higher harmonics are 
relevant in the modulation (Prrez-Mato & 
Madariaga, 1987). In general, the breaking of 
relation (9) can only happen through a further 
hypothetical first-order phase transition into a new 
incommensurate phase, if very high-order terms in 
the Landau expansion become relevant; this possi- 
bility has not been detected experimentally. 

Simonson et al. (1985, 1987) argue that relation (9) 
is not satisfied in general and the superspace symme- 
try reduces to the superspace group P(Pn2~a):(sl 1). 
As can be seen from the preceding analysis, a struc- 
tural modulation of the type described above but 
excluding the phase relation (9) (what we called in §1 
the 'free-harmonics' model) introduces additional 
structural restrictions to those resulting from the 
superspace group P(Pn2~a):(s 11). The validity of this 
model was investigated with negative results, by 
means of an additional refinement process in the 
superspace group P(Pn21a):(sll), introducing the 
additional restrictions mentioned above through 
linear constraints of the refined structural param- 
eters. 

4. Structure refinement 

Structure refinement was performed by means of a 
new version of the program described in detail in 
Paciorek & Kucharczyk (1985) and Paciorek & 
Uszyfiski (1987). This last version has been updated 
and now the user can select one of two possible 
parametrizations of the atomic modulation func- 
tions: 

u(t) = ~, A,cos[2zr(nt + 4,,)] (10) 
n > 0  

u(t) = ~,[a,cos(2zrnt) + b, sin(27rnt)] (11) 
n > 0  

where u is a modulation function related to any 
structural parameter to be refined, and t is the 
internal (continous) coordinate ranging from 0 to 1, 
which corresponds to the dense set of fractional 
values q.(! + # )  in (4). Although both parametri- 
zations are equivalent, the first one may be impor- 
tant for cases when the constraint equations between 
amplitudes and/or phases should be included during 
structure refinement. These constraint equations are 
nonlinear when the second parametrization is 
selected. Furthermore, when only one harmonic is 
considered, the amplitudes can be refined using only 
main reflections at the first stage of the refinement 
(phases are fixed at arbitrary values). This approach 
also gives the correct (in the least-squares method 
sense) values of the standard deviations of ampli- 
tudes and phases (Prrez-Mato, Madariaga & Zufiiga, 
1989). 

As before, zero-order harmonics are not included. 
Instead, the average structure parameters are simul- 
taneously refined. The program also refines scale 
factors and the extinction correction in the form 
Fcc°rr=Fc/(1 + 10-SextF~2/sin0)l/4, where ext is the 
refined quantity. The quantity minimized is the 
weighted R factor. The refinement is based on F 
values and the program always works in the full- 
matrix mode. 

The structure refinement of thiourea was per- 
formed in several steps. The average structure was 
first refined using only main reflections. Starting 
parameters were taken from Elcombe & Taylor 
(1968). Subsequently, the displacive modulation (as 
described in §3) was introduced and the whole struc- 
ture was refined using all observed reflections. The 
arbitrary global phase 4, in (7) was set to zero. 
According to the highest order of observed satellite 
reflections, the maximum number of harmonics in 
the modulation functions was set to three. The tem- 
perature factors (anisotropic for non-H atoms and 
isotropic for H atoms) were assumed to be unmodu- 
lated. At the end of the refinement process, extinc- 
tion corrections were introduced. The final R factors 
are presented in Table 4. 

Although the refinement results are satisfactory, 
the partial agreement factors and the scaling ratios 
indicated a clear asymmetry of the refinement 
between the m < 0 and m > 0 satellite reflections. For 
instance, in the case of first-order satellites, the par- 
tial R factors were 0.044 and 0-060, respectively. The 
intensity decay of satellite reflections was usually 
observed to be faster than that of main reflections 
(Gao et al., 1988). Taking into account the data- 
collection sequence indicated in §2, the main reason 
for this asymmetry is probably the fact that only 
main reflections were used for the intensity decay 
correction. Consequently, at this stage of the 
refinement, three independent scale factors, for main 
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Table 4. Partial R factors of the modulated structure 
of thiourea 

m is the order o f  satellite reflections, N is the number  o f  observed 
reflections and R is the agreement factor. 

N R R* R t  
All observed reflections 1419 0.046 0.050 0.060 
Iml = 0 344 0.038 0.041 0.037 
Iml = 1 568 0"046 0 " 0 5 2  0"050 
Iml = 2 327 0"089 0"091 0"184 
Iml = 3 180 0.115 0.124 0.471 

* R factors for the refinement with a single scale factor. 
I" R factors for the model with only first-order harmonics.  

reflections, satellite reflections with m < 0, and satell- 
ite reflections with m > 0, were intrduced. By this 
means, these decay effects were taken into account, 
at least partially. In the subsequent refinement pro- 
cess, the asymmetry decreased considerably and the 
fit improved significantly. The average structure and 
the modulation parameters are presented in Tables 5 
and 6.* The strongest main reflection (0200) was 
marked as non-observed owing to high extinction 
effects and was not taken into account in the least- 
squares refinement (but it contributes to the R factor 
for all reflections). 

A parallel refinement, with only a first-order har- 
monic in the modulation, was also performed in 
order to establish the importance of higher harmon- 
ics. The agreement factors for this model are also 
presented in Table 4. Refinement results were not 
satisfactory, especially for second- and third-order 
satellite reflections, which are obviously more 
affected by the higher-order harmonics of the dis- 
placive modulation. 

Additional calculations were performed to check 
the 'free-harmonics' model of Simonson et al. (1985, 
1987). The symmetry of the structure was lowered to 
the noncentrosymmetric superspace group P(Pn2~a):- 
(sll), but according to the model, the average 
structure was maintained centrosymmetric and the 
modulation functions for atoms lying on the plane m 
were constrained to form (7), with the global phases, 
¢t,, in the second and third harmonics as free param- 
eters to be refined, instead of satisfying (9). The 
arbitrary global phase of the first harmonic was kept 
zero. All these structual restrictions were introduced 
by means of linear constraint equations on the 
phases of the different atomic modulation functions. 
In addition, the amplitudes and phases of the modu- 
lations, corresponding to pairs of atoms related by 
the plane m in the average structure, had to be 
constrained by means of (5) to maintain the required 

* Lists o f  structure factors and anisotropic thermal parameters 
have been deposited with the British Library Document  Supply 
Centre as Supplementary Publication No. SUP 52127 (14 pp.). 
Copies may  be obtained through The Executive Secretary, Inter- 
national  Union of  Crystal lography,  5 Abbey Square, Chester CH 1 
2HU, England. 

Table 5. Average structure of thiourea 

U~q = ~Y-~Uii for non-H atoms.  Standard deviations are given in 
parentheses. 

x y z U~q (or U) (/~2) 
S - 0-00760 (5) 0.25000 0.11473 (7) 0.029 
C 0.08812 (20) 0 - 2 5 0 0 0  -0.16772 (30) 0.028 
N 0-12754 (14) 0.38277 (16) -0.27982 (20) 0.040 
HI 0.1606 (23) 0.3796 (24) -0-4266 (29) 0.031 
H2 0-0921 (20) 0.4699 (25) -0.2145 (27) 0.013 

Table 6. Amplitudes ( x 105) and phases ( x 10 3) of the 
modulation functions of thiourea 

Modulating functions are: u , ( t )=  ~,°~3aj .~cos[2rt(nt  + ~01~)], i=  x, y, z. 
Standard deviations are given in parentheses. Starred parameters are fixed. 

First harmonic Second harmonic Third harmonic 
ai.i tp~.l a~.2 (P~.2 a,.3 ~P~,3 

S x 3418 (19) 0* 139 (8) 500* 150 (6) 500* 
y 40 (6) 250* 28 (7) 750* 5 (3) 750* 
z 1204 (11) 500* 128 (7) 500* 97 (12) 0* 

C x 1201 (29) 0* 135 (25) 500* 24 (26) 0* 
y 107 (24) 750* 1 (30) 750* 42 (34) 250* 
z 2758 (39) 500* 67 (35) 500* 235 (45) 0* 

N x 320(21) 28(11) 168(18) 431 (18) 105(20) 957(33) 
y 318 (15) 733 (8) 15 (18) 620 (216) 74 (22) 241 (63) 
z 3406 (31) 493 (1) 33 (27) 240 (103) 343 (36) 983 (17) 

HI x 688 (233) 65 (62) 212 (234) 825 (151) 96 (249) 849 (401) 
y 346 (196) 734 (88) 220 (243) 835 (188) 163 (296) 472 (287) 
z 4384 (217) 504 (13) 712 (274) 934 (71) 820 (412) 962 (90) 

H 2 x  653(196) 64(49) 176(176)382(155)111(216) 129(304) 
y 209 (160) 372 (121) 386 (193) 404 (86) 346 (230) 164 (141) 
z 3662 (281) 469 (13) 325 (299) 515 (126) 322 (310) 144 (151) 

symmetry mode. The resulting phase shift between 
the modulation harmonics was of the order of mag- 
nitude of the standard deviation for the phase 
parameters. No improvement of the agreement with 
the high-symmetry model was obtained. Full 
refinement within the noncentrosymmetric super- 
space group P(Pn2~a):(sl 1) was also attempted with 
similar negative results. 

5. Concluding remarks 

The consistency of the determined structure model 
with a rigid-body picture of the thiourea molecules 
(see Fig. 3) was investigated by means of a least- 
squares fitting program. An optimal rigid-body 
structural model consistent with the observed indivi- 
dual atomic modulations was searched. The fit was 
satisfactory if H atoms were excluded. The resulting 
model is shown in Table 8. The agreement factor D 
in this table corresponds to the average value in a 
representative number of basic cells of [Y~(dc- do)2/ 
yd2] °5, where do are the 'observed' atomic dis- 
placements in the free-atom model and dc the calcu- 
lated ones in the rigid-body approximation. 

There are two reasons why H atoms could not be 
included in the rigid-body fitting. On one hand, the 
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possibility of rotations of the NH2 groups (see Fig. 3) 
with respect to the rest of the molecule is plausible. 
On the other hand, given the small weight of the H 
atoms on the diffraction diagram, the harmonics 
determined for the H atoms may have little physical 
significance. This is clearly demonstrated when the 
interatomic distances are calculated. In Table 7, the 
average, maximum and minimum values of the inter- 
atomic distances along the modulation are shown. 
The bond distances are typically maintained up to 
0.01-0.02 A, except for the N - - H  bond which takes 
unrealistic values. The cause of such unphysical 
behaviour can be traced back to the second- and 
third-order harmonics of the hydrogen-modulation 
functions. These can therefore be considered an arti- 
fact of the refinement process. However, the results 
of the refinement hardly depend on these structural 
parameters. The agreement factors obtained for the 
same structure, restricting the hydrogen modulation 
to their first harmonic, do not differ significantly 
from those given above. 

The modulation functions corresponding to the 
fitted rigid-body model are given in Table 8 and 
shown in Figs. 4 and 5. A clear step-like form can be 
observed in two of the three transverse components 
(Ry and Tz). In the case of Tx, the third harmonic is 
too small for such an effect, but is adequately in 
antiphase to introduce the step-like form for larger 
amplitudes. These three transverse components are 
clearly predominant in the modulation. In the first 
harmonic, their amplitudes are one order of magni- 
tude larger than those of the longitudinal com- 
ponents. The amplitudes of the third harmonic are in 
general comparable to those of the second harmonic 
or even larger. In the case of the transverse com- 
ponents, the third-harmonic amplitudes are typically 
one order of magnitude smaller than those of the 
first harmonic and therefore comparable to the 
values of the first-harmonic longitudinal com- 

Oc 

N 

s c 

H1 

b 

Fig. 3. P ro jec t ion  o f  the ave rage  s t ruc tu re  o f  t h iou rea  on  the ab 
plane.  R i g i d - b o d y  uni ts  refer  to  indiv idual  SC(NH2)2 molecules .  

Table 7. Interatomic distances (]~) and angles (o) of 
thiourea 

S t a n d a r d  dev ia t ions  are  given in parentheses .  

A v e r a g e  Min.  Max.  Max.  - min.  
S - -C  1.704 (1) 1-704 (1) 1.715 (2) 0.01141 
C - - N  1.3228 (8) 1.314 (2) 1.338 (2) 0.02388 
N--H1 0.84 (I) 0-77 (3) 0.93 (3) 0.16453 
N - - H 2  0.87 (I) 0.79 (3) 0-92 (3) 0-13528 

S - - C - - N  121.0 (1) 120.7 (3) 121.6 (3) 0-63 
H I - - N - - H 2  121 (2) 120 (4) 122 (4) 1.96 

Table 8. Amplitudes and phases (/2zr) of the modula- 
tion functions corresponding to the fitted rigid-body 

model of the modulated structure of thiourea 

The rotational (R) and translational (7") amplitudes 
degrees and relative units ( x 10'), respectively. D 
described in the text. 

are given in sexagesimal 
is the agreement factor 

First harmonic Second harmonic Third harmonic 
a tp a tp a q~ 

R x 0.552 0.75 0.101 0.25 0.169 0-25 
y 6.326 0.00 0.031 0.50 0.552 0.50 
z 0.364 0.75 0.150 0.75 0.000 0.75 

T x 0.0185 0-00 0.0015 0-50 0.0003 0.50 
y 0.0012 0-75 0.0002 0-75 0.0003 0.25 
z 0.0234 0-50 0.0005 0.50 0.0022 0.00 

D 0.05 0.24 0- l0 

ponents. The form of the modulation functions for 
these longitudinal components (see Fig. 5) is especi- 
ally significant. The phase relations between the first 
and third harmonics define a characteristic form. The 
displacements concentrate in the internal coordinate 
interval around 0.25 and 0-75, while the modulation 
tends to become zero at the intervals where the 
transverse components have their steps (see Fig. 4). 
This typical form of the transverse and longitudinal 
components can also be clearly distinguished in the 
individual atomic modulations. This behaviour can 
be understood, if we consider that when the modula- 
tion wavevector q becomes null the transverse com- 
ponents merge into the homogeneous mode B3,. and 
this mode is responsible for the primary distortion in 
the ferroelectric nonmodulated phase of symmetry 
P2~ma. On the other hand, the longitudinal com- 
ponents correspond, when the modulation is elimi- 
nated, to the symmetry Big and are therefore 
forbidden in the P21ma phase (the labels of the 
irreducible representations depend on the choice of 
setting). 

The theoretical models proposed so far for 
thiourea do not predict in principle the existence of a 
soliton regime as a previous stage to the transition 
into the ferroelectric nonmodulated phase (Bruce, 
Cowley & Murray, 1978; Denoyer & Currat, 1986). 
In fact, the relative maximum amplitude for the 
third-order harmonic has been estimated to be 
smaller than 3.5% (Bruce et al., 1978). However, the 
third harmonic determined in the present analysis 
surpasses in some cases 10 and 25% of the first- 
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harmonic amplitude for the transverse and longitu- 
dinal components respectively. Figs. 4 and 5 clearly 
show the existence of an incipient soliton regime 
which is caused essentially by the contribution of this 
third harmonic. The two steps in the modulation of 
the transverse components correspond to the two 
domains in the ferroelectric phase, while the longi- 
tudinal component of the modulation tends to be 
zero in the commensurate domains and concentrated 
in the discommensuration regions, in agreement with 
the fact that the longitudinal components should 
disappear in the ferroelectric phase. 

In broad terms the determined modulation seems 
to correspond to a soliton density ns (Blinc, 
Prelovsek, Rutar, Seligar & Zumer, 1986) of about 
0.5. For comparison, we show in Fig. 6 the general 
form of the theoretical modulation functions for the 
transverse and longitudinal components: 

Ut(t ) -" ACOS[O(I)] 

ul(t) = Acos[ 0(t) + r r / 2 ] ,  (12) 

with the phase function 0(t) having a 'soliton' form 
corresponding to a soliton density of approximately 

0 0.2 0.4 0.6 O.8 1 
' ' ' ' ' ' ' ' ' I / 

" " " " " ' " ,  Rx , , " " ' ~  " - "1 ~ 
tt3 
c:5 

~o 

- .  . . . . . . .  - 

~0 0'.2 0'.,. 0'.6 °'.8 
t 

Fig. 4. Rotational modulation functions, Rx, Rj, and Rz, obtained 
by fitting the independent atomic displacements of Table 6 to a 
riNd-body model, t refers to the internal coordinate and 
rotations are given in °. 

0.56. The essential features of the experimental 
modulation functions can be identified in this simu- 
lation. Although they do not correspond to what can 
be called the 'narrow' soliton regime, a soliton den- 
sity as low as 0.5 is quite remarkable, if we consider 
that in compounds like Rb2ZnCI4, which are con- 
sidered as prototype examples of materials having a 
soliton regime, the soliton density has been reported 
to decrease only to values of about 0.3 (Blinc, Lozar, 
Milia & Kind, 1984; Blinc et al., 1986) 

However, the experimental results do not agree 
completely with a soliton regime picture, because a 
unique soliton density is not consistent with the form 
of all the determined modulation functions. In par- 
ticular, that corresponding to the x translations is 
practically sinusoidal and in this sense differs appre- 
ciably from the rest. These deviations from a 
common behaviour may be due to the accuracy 
limits of the structural analysis (which are especially 
critical for the third-harmonic parameters) and the 
errors introduced by rigid-body fitting. 

The first harmonic in Table 8 is comparable with 
the results of Takahashi et al. (1988). The amplitudes 
are in the present case a little larger, as expected 
because of the different temperatures investigated, 
while the relative phases coincide. An exception is Tz 
which is seemingly smaller. On the other hand, the 
structural model in Table 8 differs considerably from 
that proposed in Simonson et al. (1988), especially 
the transverse component Tx and the longitudinal 
ones Rx and Rz. Also the relative phases do not 
coincide in general. 

The reported structure can also be compared with 
the ferroelectric structure at 110 K, determined by 
Elcombe & Taylor (1968). The atomic displacements 
relating the ferroelectric structure with the average 
structure of the modulated structure have been fitted 
to a rigid-body model. A distorting mode corre- 
sponding to the symmetry B3, is predominant. Its 
amplitudes, Ry = 8.02 ° and Tz = -0-0294 relative 

0 0.2 0.4 0.6 0.8 1 o 

/"  .," ". ~ <,.-I 

I'~O ~ ' ,  Tx '""Sv' .......... "" 2 

P, ? . . . . .  . . . . .  

o 0.2 0.4 t 0.6 0.8 ~ ,  

Fig. 5. Translation modulation functions, T,, Ty and Tz (x  104), 
obtained as in Fig. 4. 
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Fig. 6. Simulated modulation functions [see equation (12)] in 
arbitrary units, for a soliton density n, = 0.56. Full line: u,(t), 
dashed line: u~(t). 
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units, are consistent with those of the first harmonic 
in the modulated phase (see Table 8), but about 25% 
larger. Given the arbitrary choice of origin along the 
x coordinate in the ferroelectric space group, a simi- 
lar comparison for the x translation Tx is not 
possible. 

Recently, Tanisaki & Mashiyama (1988) have 
reported a structural analysis of the same modulated 
phase using a standard refinement procedure. The 
structure was taken as a ninefold commensurate 
structure and refined in the space group Pnma. A 
commensurate approach to this type of structure 
implies in general a larger number of refinement 
parameters than the superspace analysis (if in this 
latter refinement the number of harmonics in the 
modulation is truncated). In the present case, the 
number of positional and thermal parameters is re- 
duced from 109 and 128, respectively, in Tanisaki & 
Mashiyama (1988), to 85 and 16 in the present study. 
Nevertheless, taking into account the differences 
between the two descriptions, the results of both 
studies essentially coincide. In particular, a soliton- 
like form for the atomic modulation functions can 
also be observed in Tanisaki & Mashiyama (1988). 
The rigid-body translation along x is also an excep- 
tion in their model, being essentially sinusoidal. 

It should be noted that the incommensurate 
description used in the present work implies that the 
phase ~b in (7) is considered irrelevant and arbitrary. 
In fact, the expression used for the structure-factor 
modulus is independent of ~p. On the other hand, the 
choice of the space group Pnma in a commensurate 
description is equivalent to an a priori restriction on 
the value of ~. The two strictly different commen- 
surate models obtained by Tanisaki & Mashiyama 
(1988) correspond to the only two possible nonequiv- 
alent ~b values which lead to commensurate phases 
with Pnma symmetry, if the modulation wavevector 
takes the value ~b* (see Table 3). The fact that the fit 
was of similar quality for both commensurate models 
indicates that the diffraction diagram is essentially 
insensitive to the value of the modulation phase, 
and confirms the validity of an incommensurate 
description. 
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